Haloform formation in coastal wetlands along a salinity gradient at South Carolina, United States

Jun-Jian Wang,A Yi Jiao,B Robert C. RhewB and Alex T. ChowA,C

ABaruch Institute of Coastal Ecology and Forest Science, Clemson University, PO Box 596, Georgetown, SC 29442, USA.
BDepartment of Geography and Berkeley Atmospheric Sciences Center, University of California at Berkeley, Berkeley, CA 94720, USA.
CCorresponding author. Email: achow@clemson.edu

Environmental context. Natural haloform emissions contribute to stratospheric ozone depletion but there are major unknown or underestimated sources of these gases. This study demonstrates that soil and water at tidal wetlands are important haloform sources, and emissions peak at the forest–marsh transition zone. The low-lying forested wetlands of the south-eastern United States that are facing sea-level rise and seawater intrusion may become hotspots for haloform emission.

Abstract. Soil haloform emissions are sources of reactive halogens that catalytically deplete ozone in the stratosphere but there are still unknown or underestimated haloform sources. The >200 000 ha of low-lying tidal freshwater swamps (forests and marshes) in the south-eastern United States could be haloform (CHX3, X = Cl or Br) sources because sea-level rise and saltwater intrusion bring halides inland where they mix with terrestrial humic substances. To evaluate the spatial variation along the common forest–marsh salinity gradient (freshwater wetland, oligohaline wetland and mesohaline saltmarsh), we measured chloroform emissions from in situ chambers and from laboratory incubations of soil and water samples collected from Winyah Bay, South Carolina. The in situ and soil-core haloform emissions were both highest in the oligohaline wetland, whereas the aqueous production was highest in mesohaline saltmarsh. The predominant source shifted from sediment emission to water emission from freshwater wetland to mesohaline saltmarsh. Spreading out soil samples increased soil haloform emission, suggesting that soil pores can trap high amounts of CHCl3. Soil sterilisation did not suppress CHCl3 emission, indicating the important contribution of abiotic soil CHCl3 formation. Surface wetland water samples from eight locations along a salinity gradient with different management practices (natural v. managed) were subjected to radical-based halogenation by Fenton-like reagents. Halide availability, organic matter source, temperature and light irradiation were all found to affect the radical-based abiotic haloform formation from surface water. This study clearly indicates that soil and water from the studied coastal wetlands are both haloform sources, which however appear to have different formation mechanisms.

Additional keywords: bromide, chloroform, dissolved organic matter, ozone depletion, salinity, Winyah Bay.

Received 1 November 2014, accepted 1 December 2015, published online 29 February 2016

Introduction
Haloforms (CHX3; also known as trihalomethanes) are sources of reactive halogens (X = Br, Cl, I) to the troposphere and lower stratosphere, contributing to the atmospheric budget of very-short-lived substances and to catalytic ozone depletion in the stratosphere[1–3]. In the water industry, haloforms have also been of great interest to water engineers since the 1970s[4] because of their potential carcinogenic risks and non-carcinogenic toxicity to human beings as disinfection byproducts.[5,6] Water disinfection and pulp bleaching are well-known anthropogenic sources of haloform, but account for a decreasing fraction of haloform emissions because pulp manufacturing has largely switched bleaching methods.[7–9] More than 90% of chloroform and 70% of bromoform globally are estimated to originate from natural sources,[7,10] with soil processes and seawater emission as prominent sources respectively.[11] Natural sources identified since the 1990s are widespread in global terrestrial ecosystems.[12–18] Known methods of haloform production include haloperoxidase-mediated and Fenton or Fenton-like radical-based halogenation of natural organic matter, as well as natural thermal processes (fires, volcanoes and hydrothermal processes).[11,15,19–22]

Separating abiotic and biotic processes in soil and water requires a mechanistic understanding of production and knowledge of associated intermediate compounds. An abiotic route to formation of halocarbons such as chloroacetic acid and chloroform has been shown by Fenton-like reactions acting on phenolic moieties such as ethoxphenol and catechol, which are considered model substances of monomeric units of humic acids.[19,23,24] A biotic route to haloform formation is mainly associated with litter-decomposing organisms (e.g. bacteria, fungi and termites) that can produce enzymes (e.g. haloperoxidases and halogenases)
converting inorganic halogens to organohalogen.\[^{25-28}\] The yields and speciation of halocarbons have been suggested to be associated with the degree of humification and sources of natural organic matter.\[^{20,29-33}\] In either abiotic or biotic processes, formation of reactive halogen species such as hypochlorous acid or hypobromous acid with reactive oxygen species (ROSs) is considered as one of the pathways in halogenation processes.\[^{33,34,35}\]

Rising sea level (up to 9.1 mm year\(^{-1}\) on the Louisiana coast) along the flat south-east US coastal plain significantly change both vegetation composition and salinity of coastal ecosystems.\[^{36}\] Conservative estimates indicate more than 200 000 ha of tidal freshwater swamps, including forested wetlands and marshes, along the coast of the south-eastern US, and South Carolina has the largest distribution with over 60 000 ha.\[^{37,38}\] As the boundary between the low-lying coastal forest and high marsh moves upslope owing to sea-level rise, the plant composition, primary productivity, biogeochemical cycles and even the function of the freshwater wetlands can be considerably different from their previously unaltered states.\[^{38–40}\] Forest vegetation (e.g. \textit{Pinus}, \textit{Quercus} and \textit{Vaccinium}) is successively replaced by coastal salt marsh (e.g. \textit{Juncus} and \textit{Spartina}).\[^{39,41}\] Sodium and chloride become the dominant cation and anion respectively in seawater inundation areas. Opening of the forest canopy due to dieback allows greater sunlight penetration, which may promote photochemical halogenation reactions in surface water.\[^{35,43}\] Also, seawater intrusion may bring in halogenating enzymes from marine organisms in coastal environments.\[^{27}\] The production of hydrogen peroxide (H\(_2\)O\(_2\)), singlet oxygen (\(\text{O}_2^*\)), hydroxyl radical (\(^{\bullet}\text{OH}\)) and other reactive species by photo-Fenton reactions, resulting in photobleaching of coloured dissolved organic matter (DOM), has been observed in coastal rivers and seawaters.\[^{44-46}\] Particularly, high levels of organic carbon are common in waters (up to 50 mg L\(^{-1}\)) of the tidal freshwater forest wetlands, which may serve as source materials for haloform formation.\[^{47}\] Therefore, the prerequisites for haloform formation in coastal wetlands in the south-eastern US are likely satisfied, but information about halocarbon biogeochemistry in this region is very limited.

To understand how sea-level rise or seawater intrusion may affect the haloform emissions, the present study measured the haloform emissions from in situ field chambers along a salinity gradient (freshwater wetland \(\rightarrow\) oligohaline wetland \(\rightarrow\) mesohaline saltmarsh) in Winyah Bay, South Carolina, USA. By comparing the soil emission and aqueous production, we aimed to explore whether soil emission is the dominant source for all sites. In the laboratory soil incubation, effects of soil porosity and enzymatic process on soil haloform emission were evaluated by limiting soil pores by spreading the material out and microbial activity by thermal sterilisation respectively. In the laboratory water incubation, Fenton-like reagents were added to natural water samples to test the possibility of radical-based haloform formation from water and the effects of halide availability, DOM source, temperature and sunlight. The current study focussed on the chlorinated and brominated haloforms owing to their expected higher abundance over iodinated species.

Materials and methods

Study sites

Four natural and two managed wetlands in Winyah Bay, South Carolina, USA, were included in the present study. Winyah Bay (33°16′29″N, 79°14′43″W) is the estuary associated with the third-largest watershed draining into the Atlantic Ocean on the east coast of the USA (Fig. 1). These blackwater-dominated, low-lying wetland ecosystems have experienced severe saltwater intrusion, converting freshwater forested wetland to degraded oligohaline wetland and to salt marsh.\[^{40,48}\]

A forest–marsh transect was chosen to cover four natural wetlands within Hobcaw Barony in North Winyah Bay: freshwater wetland (Site 1), oligohaline wetland (Site 2), mesohaline saltmarsh (Site 3) and euhaline saltmarsh (Site 4). The 2.4 ha freshwater wetland (Site 1) is a healthy forested wetland with a water salinity of 0.5 ppt or less and dominated by bald cypress (\textit{Taxodium distichum}), water tupelo (\textit{Nyssa aquatica}) and swamp tupelo (\textit{Nyssa sylvatica} var. \textit{biflora}).\[^{49}\] The oligohaline wetland (Site 2) is a salt-afllicted forested wetland and has experienced moderate saltwater intrusion, with a salinity of 0.5–5 ppt. Some species progressively fall out of the vegetation assemblage as the canopy opens, leaving only bald cypress and a scattering of swamp tupelo. The mesohaline saltmarsh (Site 3) is defined as having originally been freshwater wetland that now receives saline water inputs, resulting in a salinity of 18 ppt or less. All hardwood species have died and been replaced with salt marsh vegetation (e.g. \textit{Juncus} and \textit{Spartina}).\[^{50,51}\] Stumps are still visible but are progressively covered by sediment accretion. The euhaline saltmarsh (Site 4) is located in the North Inlet of Winyah Bay with a single outlet to the sea and three major tidal creeks. The marsh creeks have a mean tide range of 1.7 m and recorded peak current velocities of 2.3 m s\(^{-1}\). The marsh is strongly influenced by oceanic water and the salinity seldom falls below 32 ppt. The dominant flora is the cordgrass \textit{Spartina alterniflora}. Site 1 is considered an isolated freshwater wetland, whereas Sites 2, 3 and 4 are considered tidal wetlands. Details of wetlands in this transect have been described elsewhere.\[^{47,48}\]

In contrast to North Winyah Bay, flood control gates are in place for water and wetland management in Yawkey Wildlife Center in South Winyah Bay. A managed freshwater and a managed saltwater wetland from the Yawkey Wildlife Center were also selected for the study. The freshwater wetland has a surface area of \(\sim\)125 ha with an average water depth of \(\sim\)0.5 m. Waters were collected from the inflow (Site 5) and outflow (Site 6). The managed saltwater wetland has an area of 20 ha with an average water depth also \(\sim\)0.5 m. The area was generally flooded in the duck-hunting season (Oct–April) but is completely drained during the summer. Water samples were also collected from the inflow (Site 7) and the outflow (Site 8).

In situ field flux measurements

We conducted in situ field flux measurements at the freshwater forested wetland (Site 1), oligohaline forest wetland (Site 2) and mesohaline saltmarsh (Site 3) on 14–17 May 2012, using the static chamber method.\[^{50,51}\] At each site, four chamber experiments were conducted, with a pair of large aluminium chambers (53.7 × 53.7 × 44.1-cm lid and 51.4 × 51.4 × 22.9-cm base) and a pair of smaller polycarbonate chambers (29.4 × 29.4 × 30.5-cm lid and 29.4 × 29.4 × 30.5-cm base). The aluminium chamber bases were installed the day before the field measurements whereas the polycarbonate chambers were installed 6 months prior. The freshwater forested wetland sites were entirely inundated, with no vegetation above water level within the chambers. The oligohaline forest wetland sites were all muddy with little to no aboveground vegetation, although one aluminium chamber site contained a cypress knee inside the footprint of the chamber. The mesohaline saltmarsh sites all...
were inundated with salt water but with dense emergent *Spartina* cordgrass contained within the footprint of the chamber. Briefly, gas samples were collected from the chamber headspace at the beginning and end of the chamber closing (at 1 and 20 min). Air samples were collected in previously evacuated canisters (1-L electropolished stainless steel or 3-L silica-lined stainless steel) for haloform analysis by gas chromatography–mass spectrometry (GC-MS; Agilent 6890N/ 5973, Agilent Technologies, Santa Clara, CA) (see below). The air temperatures inside and outside the chamber were recorded using iButtons (Dallas Semiconductor Maxim, Sunnyvale, CA). Each air sample was measured 2 to 4 times by GC-MS (see below), and each concentration measurement was plotted against time of enclosure. The net flux was calculated as the net increase of moles of trace gases in the chamber (concentration × volume) divided by the basal area of the chamber and chamber enclosure time and expressed in units of nanomoles per square metre per day. The error in the slope of the linear regression (95% confidence interval) was propagated with the error in the number of moles of air in the chamber to derive the flux error. The two types of chambers did not show significantly different CHCl₃ fluxes overall (*P* = 0.25), but the polycarbonate chambers did show an internal temperature increase (averaging 4°C higher relative to outside chamber temperatures), in contrast to the aluminium chambers (averaging 1°C lower), consistent with partial sunlight penetration in the translucent polycarbonate chambers. Using two-point concentration trends may underestimate the flux if gas-phase enrichment is non-linear (i.e. a function of chamber concentration), but in other studies using three time points, the concentration trends were linear over this time period of enclosure (e.g. Khan et al.[51,52]).

Controlled laboratory incubation

Soil core incubations

Twelve surface-soil samples (0–5 cm) were collected between 14 January and 17 March 2015, four each from three different sites (freshwater wetland, oligohaline wetland and mesohaline saltmarsh). Soil cores were collected into aluminium sheaths using a soil corer (AMS Inc., American Falls, ID), shipped to the University of California at Berkeley and stored at −5°C until analysis. Prior to each set of incubation experiments, soil samples sat at room temperature for at least 12 h. For each incubation, the soil sample was sealed in a glass Mason jar (1.9 L) so that exchanged gases could be observed through the changing composition of the headspace. Right before the start of each incubation, the headspace was flushed with ambient air for ~30 s. The
electrical conductivity at temperature 25°C had higher emissions than the second incubation, probably due to the presence of chlorinated solvents (CHCl₃) emissions. Subsequently, all soil samples were steam-lysed using a TOC/TN analyser (Model TOC-Vcsh, Shimadzu, Kyoto, Japan). Concentrations of inorganic nitrogen (NH₄⁺–N and NO₃⁻–N) and PO₄³⁻–P were determined using a Systeas Easychem discrete analyser (Systea Scientific, Oak Brook, IL). Anions including chloride, bromide and sulfate were determined using ion chromatography (IC, Metrohm, Riverview, FL) with a Metrosep ASUPP7–250 column. The absorbance of each water sample was scanned from 200 to 700 nm using a UV-1800 UV-Vis spectrometer (Shimadzu, Kyoto, Japan), and specific ultraviolet absorbance (SUVA) was calculated by normalising ultraviolet absorbance at 254 nm to DOC concentration (L mg⁻¹ m⁻¹). SUVA has been widely used as a surrogate of aromatic carbon content of DOC. The absorbance at 254 nm divided by absorbance at 365 nm, which is an important index of molecular size and photoreactivity of DOC.

The three-dimensional excitation–emission-matrix fluorescence scans (excitation (Ex) range: 220–450 nm; emission (Em) range: 220–550 nm) for water samples were conducted in an RFS501 spectrofluorometer (Shimadzu) with Ex and Em slit widths of 5 nm. Scanned fluorescence excitation–emission matrices (EEM) were corrected to remove the instrument-dependent effects, inner-filter effects and Raman effects, and to standardise the units to Raman units (normalised to the integral of the Raman signal between 390 and 410 nm in emission at a fixed excitation of 350 nm). To account for reabsorption of the light emitted by fluorophores in a concentrated water sample, all samples were diluted with Milli-Q water to an ultraviolet absorbance at 254 nm of 0.3 or less. Several indices based on fluorescence EEMs were calculated, including the fluorescence index (FI), humification index (HIX) and freshness index (β/z). Briefly, the fluorescence index, an indicator for terrestrial origin (~1.3) or microbial origin (~1.8) of the DOM, was calculated as the fluorescent response of Em at 470 nm divided by that at 520 nm, at Ex 370 nm. The humification index, which is positively linked to the abundance of the humic substance and the degree of humification, was calculated as the fluorescent area under the 435–480-nm Em spectra divided by the 300–345-nm peak area, at Ex 254 nm. The freshness index (β/z), an indicator of the abundance of freshly produced autochthonous DOM, was calculated as the fluorescent ratio of Em intensity at 380 nm divided by the Em intensity maximum observed between 420 and 435 nm, at Ex 310 nm. The protein content and redox index were calculated from Cory and McKnight’s PARAFAC model. The redox index, ranging from 0 (oxidised) to 1 (reduced), is an index linked to the redox status of the quinone-like moieties of the DOM.

Water collection and characterisation

Grab water samples were collected using 500-mL amber glass bottles within 3 h of high tide on 20 May 2012. Bottles were completely filled without headspace, stored in an ice cooler and transferred back to the Baruch Institute laboratory in Georgetown, South Carolina. For the natural wetland samples in North Winyah Bay, three bottles of water were collected randomly from different locations within the site as replicates. Water samples were then filtered through a 0.45-μm polyether-sulfone membrane (Super-450, Pall Corporation, Ann Arbor, MI) and stored at 4°C before analyses.

All filtered water samples were measured for pH and electrical conductivity at temperature 25°C (EC₂₅) using an Accucent XL60 dual channel meter (Fisher Scientific, Pandan Crescent, Singapore). Concentrations of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were analysed using a TOC/TN analyser (Model TOC-Vcsh, Shimadzu, Kyoto, Japan). Concentrations of inorganic nitrogen (NH₄⁺–N and NO₃⁻–N) and PO₄³⁻–P were determined using a Systeas Easychem discrete analyser (Systea Scientific, Oak Brook, IL). Anions including chloride, bromide and sulfate were determined using ion chromatography (IC, Metrohm, Riverview, FL) with a Metrosep ASUPP7–250 column. The absorbance of each water sample was scanned from 200 to 700 nm using a UV-1800 UV-Vis spectrometer (Shimadzu, Kyoto, Japan), and specific ultraviolet absorbance (SUVA) was calculated by normalising ultraviolet absorbance at 254 nm to DOC concentration (L mg⁻¹ m⁻¹). SUVA has been widely used as a surrogate of aromatic carbon content of DOC. The absorbance at 254 nm divided by absorbance at 365 nm, which is an important index of molecular size and photoreactivity of DOC.

The three-dimensional excitation–emission-matrix fluorescence scans (excitation (Ex) range: 220–450 nm; emission (Em) range: 220–550 nm) for water samples were conducted in an RFS501 spectrofluorometer (Shimadzu) with Ex and Em slit widths of 5 nm. Scanned fluorescence excitation–emission matrices (EEM) were corrected to remove the instrument-dependent effects, inner-filter effects and Raman effects, and to standardise the units to Raman units (normalised to the integral of the Raman signal between 390 and 410 nm in emission at a fixed excitation of 350 nm). To account for reabsorption of the light emitted by fluorophores in a concentrated water sample, all samples were diluted with Milli-Q water to an ultraviolet absorbance at 254 nm of 0.3 or less. Several indices based on fluorescence EEMs were calculated, including the fluorescence index (FI), humification index (HIX) and freshness index (β/z). Briefly, the fluorescence index, an indicator for terrestrial origin (~1.3) or microbial origin (~1.8) of the DOM, was calculated as the fluorescent response of Em at 470 nm divided by that at 520 nm, at Ex 370 nm. The humification index, which is positively linked to the abundance of the humic substance and the degree of humification, was calculated as the fluorescent area under the 435–480-nm Em spectra divided by the 300–345-nm peak area, at Ex 254 nm. The freshness index (β/z), an indicator of the abundance of freshly produced autochthonous DOM, was calculated as the fluorescent ratio of Em intensity at 380 nm divided by the Em intensity maximum observed between 420 and 435 nm, at Ex 310 nm. The protein content and redox index were calculated from Cory and McKnight’s PARAFAC model. The redox index, ranging from 0 (oxidised) to 1 (reduced), is an index linked to the redox status of the quinone-like moieties of the DOM.

Water incubations and radical-based abiotic halogenation tests

Within 12 h of water sample collection, 10-mL unfiltered subsamples were transferred to two 20-mL screw-top clear headspace vials by glass pipette. One vial was immediately analysed for haloform occurrence using a headspace gas chromatograph–electron capture detector (GC-ECD; Agilent 7890, Agilent Technologies) and noted as the background haloform level. Another vial was incubated for 24 h at 25°C in the laboratory and analysed for haloform levels. The calculated difference of haloform levels between the 24-h incubation sample and the background sample is the 24-h aqueous production of haloforms.

For the radical-based abiotic halogenation of water samples, 10 mL of filtered water sample was transferred to a 20-mL amber headspace vial. Then, 100 μmol H₂O₂ (from ~30%...
H$_2$O$_2$: Acros Organics, Morris Plains, NJ) and 100 μmol Fe$^{3+}$
(in the form of Fe$_2$(SO$_4$)$_3$; Acros Organics) were carefully added
to a gently shaking vial and capped quickly. The actual H$_2$O$_2$
concentration was determined by KMnO$_4$ titration each time
immediately before addition to accurately quantify the initial
amount of H$_2$O$_2$ in the vial. All headspace vials were incubated
for 24 ± 0.5 h and analysed by GC-ECD. Blank and parallel tests
were also conducted for quality control and quality assurance.
Additions of 100 μmol H$_2$O$_2$ into the 10-mL of water samples
without addition of Fe$^{3+}$ (H$_2$O$_2$-only treatment) for the 24-h
incubation were also tested. All glassware used in the present
study was acid-washed (10% HCl for 24 h), rinsed with
deionised) water three times and baked at 200°C for 4 h.

To quantify the effects of temperature and solar radiation on
the 24-h haloform production, water samples of the mesosaline
saltmarsh were subjected to four different treatments: (i) 4°C in
a dark environment, (ii) 25°C in a dark environment, (iii) 40°C
in a dark environment, and (iv) 25°C under light irradiation.
For the irradiation treatment, clear headspace vials were used
instead of amber headspace vials, and a sunlight simulator
(Perfect Light, PLS-SXE300C, Beijing, China; 2000
mW cm$^{-2}$) was used (see Fig. S1 in Supplementary material
for lamp spectrum), and a cooling fan was used to offset the
irradiation-induced warming. When irradiation was applied, the
actual sample temperature ranged from 24.5 to 31.8°C, with a
mean of 28.3°C. The 4 and 40°C incubated samples were
warmed up or cooled down in a 25°C water bath for 15 min
before haloform quantification.

A CTC Combi PAL autosampler coupled with a GC-ECD
(Agilent 7890) was used to analyse the haloform formation
in the headspace vials. The sample vials were heated to 40°C
for 10 min in a shaker, and 1 mL of vial headspace was injected into
the GC-ECD. The column was a 0.25-mm internal diameter
× 30-m fused silica capillary with a chemically bonded methyl
polysiloxane phase (DB-1, J&W, Agilent Technologies). The
temperatures of the injection port and detector were 200 and
290°C respectively. The GC oven temperature program was set
to remain at 35°C for 22 min, increase to 145°C at a rate of
10°C min$^{-1}$, hold at 145°C for 2 min, and then increase to
270°C at 20°C min$^{-1}$, and then hold for 20 min.

Results

In situ emissions

Flux chamber measurements in the freshwater wetland (Site 1),
oligohaline wetland (Site 2) and mesohaline saltmarsh (Site 3)
demonstrated varying differences in chloroform emissions along the
salinity gradient of North Winyah Bay. As shown in Fig. 2a, the
largest CHCl$_3$ emission (209 ± 183 nmol m$^{-2}$ day$^{-1}$; mean ±
standard deviation, n = 4) was observed in the degraded oligo-
haline wetland, compared with the mesohaline saltmarsh
(71.9 ± 33.4 nmol m$^{-2}$ day$^{-1}$) and freshwater wetland
(9.69 ± 3.88 nmol m$^{-2}$ day$^{-1}$). Although bromoform was not
quantitatively measured, the largest peaks were noticed from the
salt marsh flux chamber sites, which included both standing
water and cordgrass vegetation. This is consistent with the
aquatic experiments (Aquatic haloform production section) as
well as other studies that suggested that bromoform is a
major haloform species produced in natural seawaters.

Soil core incubation emissions

As shown in Fig. 2b, the incubation of intact live soil cores from
Sites 1 to 3 also showed the largest mean of CHCl$_3$ emissions
from the oligohaline wetland (39.4 ± 19.5 nmol m$^{-2}$ day$^{-1}$;
range: 16.2–76.4 nmol m$^{-2}$ day$^{-1}$), compared with the fresh-
water wetland (18.3 ± 9.7 nmol m$^{-2}$ day$^{-1}$) and mesohaline
saltmarsh (4.32 ± 2.55 nmol m$^{-2}$ day$^{-1}$). Spreading out the soil
samples from the soil core on the bottom of the Mason jar (2.48
times greater soil surface area than the intact soil core) signifi-
cantly increased the emissions to 1.54 ± 0.49 (range: 0.85–2.01)
more than the intact soil core. Interestingly, for both intact and
spread-out soils, the dead soils and live soils had no statistical
difference in CHCl$_3$ emission (P > 0.05; paired-t-test; Fig. 3).

Aqueous haloform production

As shown in Fig. 2c, laboratory incubation of the untreated
wetland waters (unfiltered and no chemical addition) indicated
that the highest aqueous CHCl$_3$ production was in mesohaline
saltmarsh (502 ± 86 pmol L$^{-1}$ day$^{-1}$), followed by oligohaline
wetland (226 ± 72 pmol L$^{-1}$ day$^{-1}$). However, no detectable net
CHCl$_3$ production was found in freshwater wetland or euhaline
saltmarsh (<42 pmol L$^{-1}$ day$^{-1}$). For CHBr$_3$, although the net
increase of peak area from the ECD in the 24-h incubation
appeared to follow the order of freshwater wetland < oligohaline
wetland < mesohaline saltmarsh < euhaline saltmarsh, none of
them were above quantifiable detection limits (all <19 pmol
L$^{-1}$ day$^{-1}$). Based on the production results, when the water
level equals 5.0 cm, the aqueous CHCl$_3$ emissions follow the
order: freshwater wetland or euhaline saltmarsh (<2.1 nmol m⁻² day⁻¹) < oligohaline wetland (11.3 ± 3.6 nmol m⁻² day⁻¹) < mesohaline saltmarsh (25.1 ± 4.3 nmol m⁻² day⁻¹).

Factors affecting radical-based abiotic haloform formation

DOM characterisation

Comparison of water quality among sites indicated that the highest DOC concentrations, C/N ratio, SUVA (surrogate for DOM aromaticity), HIX (surrogate for humification degree of DOM) and lower E2/E3 (surrogate for quantum yields in singlet oxygen under sunlight irradiation) were found in waters from forest sites, compared with the saltmarsh sites for both natural and managed wetlands (Table 1, and Figs S2 and S3 in Supplementary material). In the managed wetlands, the waters in outlets consistently showed higher SUVA and HIX but a lower redox index compared with the inlets. The detailed characteristics of the water samples are described in Table 1 and the Characteristics of DOM section in the Supplementary material.

Effects of water chemistry and environmental factors

Additions of H₂O₂ without Fe³⁺ (H₂O₂-only treatment) did not show net haloform production from the filtered water samples. With excess Fe³⁺ and H₂O₂ additions, production of brominated haloforms, including CHCl₂Br, CHClBr₂ and CHBr₃, was observed for all wetland water samples with a C:Br ratio less than 1 (Table 1). This production was observed in all oligohaline wetland, mesohaline saltmarsh, euhaline saltmarsh and managed saltwater wetland samples studied (Fig. 4). CHBr₃ was the major species and negligible levels of CHCl₃ were found in all cases. The aqueous haloform production depended on both the intrinsic water chemistry (such as halide...
availability and DOM source) and extrinsic environmental factors (temperature and sunlight availability).

Specifically, no haloform production was observed in either natural or managed freshwater wetland water samples that had low EC25 (<0.3 mS cm⁻¹; low halide availability), even with excess doses of Fenton-like reagents. With addition of 0.05 g NaCl, which is equivalent to 5 ppt salinity in the reaction vials, elevated haloform production was observed in freshwater
wetland and oligohaline wetland waters (Fig. 5) but not for mesohaline and euhaline wetland waters, which had abundant halide (no halide limitation; Fig S4 in Supplementary material). Apparently, halide availability was the limiting factor in aqueous halogenation production in the freshwater wetland. However, halogen formation production was not simply proportional to the EC25 or bromide level of water across all samples (Fig. 4). Waters from euhaline saltmarsh had the highest bromide level in water (1.37 mmol L$^{-1}$) but the highest CHBr$_3$ formation was observed in the outflow of the managed saltwater wetland (bromide level = 0.83 mmol L$^{-1}$). This coincided with the highest reactivity of DOC in forming CHBr$_3$ (i.e. reactivity = concentration of halogenated species normalised with respect to initial DOC concentration) in the outflow of the managed saltwater wetland, with an average of 1.27 μmol CHBr$_3$ mmol$^{-1}$ C. The greater formation and reactivity of haloform in the outflow (HIX = 8.65; SUVA = 1.84 L mg$^{-1}$ m$^{-1}$) than the inflow (HIX = 6.47; SUVA = 1.03 L mg$^{-1}$ m$^{-1}$) waters highlighted that humification increased the reactivity of DOM in abiogenic haloform formation.

As shown in Fig. 6, haloform production generally increased with incubation temperature. The reactivity in bromoform formation was 263 nmol mmol$^{-1}$ C at 4°C, increased to 1.42 μmol mmol$^{-1}$ C at 25°C, and reached 3.70 μmol mmol$^{-1}$ C at 40°C. Because the experiments were conducted under the same conditions except for incubation temperature, the reactivity can be considered as the reaction rate (k) at different temperatures (T). By substituting into Arrhenius’ equation:

$$\ln(k) = -E_a/R(1/T) + \ln(A)$$

where A is the pre-exponential factor, E_a is the activation energy, and R is the universal gas constant, we find that $\ln(k) = -6394 (1/T) + 14.8$ with $R^2 = 0.999$. Because the slope of the linear regression (E_a/R) is 6394, the activation energy E_a for bromoform formation was estimated to be 53.1 kJ mol$^{-1}$. Furthermore, light irradiation on water with Fenton reagents had an even greater effect than temperature on the halogenation processes. A 10-fold increase in reactivity of bromoform formation to 12.8 μmol mmol$^{-1}$ C was observed in the light-irradiated treatment compared with that incubated under dark conditions at 25°C (Fig. 6). Importantly, a significant decrease in DOC concentration was observed in the light treatment (Fig. S5 in Supplementary material), probably due to the photo-irradiation-enhanced FeIII–FeII cycling and coagulation with DOM in water.[64,65]

Discussion

In situ, soil, and water emissions

The in situ and laboratory incubations suggest that the forest–saltmarsh transition zone (i.e. oligohaline wetland and mesohaline saltmarsh) is a hotspot of haloform production where saltwater and terrestrial DOM mix. The in situ CHCl$_3$ emission of 209 ± 183 nmol m$^{-2}$ day$^{-1}$ (range: 77–453 nmol m$^{-2}$ day$^{-1}$) in the degraded oligohaline wetland is at the high end of common emission ranges worldwide, compared with many known CHCl$_3$ sources such as salt marshes in Tasmania, Australia (mean = 14.7 nmol m$^{-2}$ day$^{-1}$)[15] inland and coastal marshes in Ireland (105 nmol m$^{-2}$ day$^{-1}$)[16] coastal salt marshes in southern California (15 nmol m$^{-2}$ day$^{-1}$)[17] peat soils at the Sacramento–San Joaquin delta in California (258 nmol m$^{-2}$ day$^{-1}$)[18] and the Alaskan Arctic tundra (45 nmol m$^{-2}$ day$^{-1}$).[19]

Comparison of the in situ, soil and water emissions (Fig. 2) clearly indicates that both wetlands soil and water could produce haloforms and their relative contributions to the total emissions are site-dependent. In the freshwater wetland, almost all emissions were contributed by the soil or sediment instead of water. The lack of halide in the wetland water is likely the limiting factor for aqueous CHCl$_3$ production. In the oligohaline wetland, the highest soil CHCl$_3$ emissions can explain the highest in situ CHCl$_3$ emissions across three sites. Also, aqueous production cannot be ignored in the oligohaline wetland as it reached 226 ± 72 pmol L$^{-1}$ day$^{-1}$. In the mesohaline saltmarsh that receives waters from the oligohaline wetland, the aqueous CHCl$_3$ production was the highest among sites and contributed an even higher fraction of the overall in situ CHCl$_3$ emissions compared with soil emissions. These results suggest that CHCl$_3$ emission appears to be maximised in the forest–marsh transition zone where chloride is introduced into forest ecosystems with high carbon levels, as evidenced by the largest emissions at the oligohaline wetland flux chambers.

Significance of abiogenic haloform formation

Using a sterilisation approach, the CHCl$_3$ emissions from live and dead soil cores were compared but no significant difference...
was found (Fig. 3c). This result suggests that the abiotic process is likely an important process in soil CHCl₃ production in coastal wetlands. It appeared to be different from previous studies that indicated predominantly biotic halomethanes production over abiotic production at a coniferous forest within the Stubbetorp catchment in south-eastern Sweden[67] or hypersaline sediments of Lake Strawbridge and Lake Orr in Western Australia.[68,69] Abundant ferric and ferrous ions from shallow groundwater of the wetland[70–72] may facilitate the abiotic halogenation process of CHCl₃. However, the detailed abiotic formation mechanism in soil remains unclear and future studies on reaction mechanisms will elucidate the chemical reactions in the soil cores. It is not known if the heating process (~90 °C) leads to complete sterilisation or generates precursors of CHCl₃ that remained 24 h later when incubations began. However, this sterilisation method has been shown to eliminate the biologically mediated methyl halide uptake by soils.[53] Current sterilisation approaches cannot completely inhibit enzymatic reactivity without changing soil organic matter[63]; however, comparing different sterilisation approaches in the future will help to more accurately understand abiotic vs. biotic halomethane formation.

With the addition of Fenton-like reagents, the high levels of radical-based halomethane production in wetland waters indicate the possibility of abiotic halomethane formation from surface water. Thermodynamic redox calculations also indicated that radical-based halomethane production by formation of hydroxyl radical and HOX is thermodynamically favoured.[74] Also, in the presence of bromide, reactive bromine species are more energetically favoured to be formed than reactive chlorine species for the same oxidation coupling reaction. The radical-based halogenation also transforms bromide rapidly to the reactive bromine species with high reaction rate constants.[75] Therefore, CHBr₃ becomes the major species of halogen as the reactive bromine species react with DOM in the radical-based halogenation tests.[19,75]

The present study clearly indicates that halide availability, organic matter chemistry, temperature and light irradiation can affect halomethane formation by radical-based halogenation. Halide availability was found to be a major limiting factor in freshwater wetlands. DOM has been previously found to affect the yield of halomethane by enzymatic halogenation[32,33] and the present study suggests that DOM chemistry is also important in affecting the yield of halomethane by radical halogenation. Particularly, DOM with a higher aromaticity or humification degree from the outlet of managed saltmarsh wetland showed the highest reactivity in halomethane formation. In addition to the effects of water chemistry, light irradiation is a key factor to promote radical-based halogenation and high temperature also favours halomethane production.

Environmental implication
Because the tidal freshwater forests and marshes are common landscapes in the south-eastern US, covering >200 000 ha,[73] the forest–marsh transition zones are likely to have contributed high halomethane emissions to the atmosphere. Sea-level rise and seawater intrusion have posed threats to the freshwater forest wetland and have been gradually changing the freshwater forest wetland to degraded oligohaline wetland. As the degraded oligohaline wetland has showed strikingly higher overall in situ, soil and aqueous CHCl₃ emissions compared with the freshwater wetland, sea-level rise and seawater intrusion, which introduce halide and potentially halogenating enzymes, are expected to largely increase the CHCl₃ emission from the affected and gradually degraded freshwater wetlands. Specifically, the predominant halomethane source shifts from sediment emission to water emission from freshwater wetland to mesohaline saltmarsh. Whereas the freshwater wetland presents soil-dominated halomethane production and mesohaline saltmarsh shows tidal-water-dominated halomethane production, the degraded oligohaline wetland in the transition zone appears to combine both favourable conditions of terrestrial and marine productions and becomes the largest emission source.

For the global halomethane budget, it has been proposed that offshore seawater and soil processes are both important CHCl₃ sources,[8] whereas coastal seawater and the open ocean are major CHBr₃ sources.[76,77] Although we found high emissions from degraded oligohaline wetlands in the present study, we are still far from the actual quantification of halomethane emission from such a landscape regionally or globally. Long-term and more intensive monitoring of the halomethane fluxes and exploration of the formation mechanisms in degrading wetland ecosystems will help clarify how sea-level rise can potentially change the global halomethane budget.

Some results of the current study also have implications on the future optimisation of methodology in halomethane flux quantification. For example, the elevated CHCl₃ emission from spread-out soil cores compared with intact soil cores suggested that soil pores can store a significant fraction of CHCl₃. Therefore, for the in situ measurement of halomethane fluxes in coastal wetlands, attention is needed to minimise the potential human or animal effects on squeezing out halomethane from the wetland soil or sediment pores, particularly for the high-emission sites. Also, based on previous studies[19,78] and the present study, abiotic halomethane formation is actually happening in both soil and water samples and highly sensitive to site-specific halide availability, organic matter chemistry and environmental factors. In particular, light irradiation is a critical factor on increasing the radical-based abiotic halomethane production by one order of magnitude. However, many in situ chamber studies use non-transparent materials, which may cause underestimation of the actual halomethane emission from the coastal wetlands by excluding the effect of sunlight. Future studies comparing clear and opaque chambers will help to better understand the effect of sunlight on halocarbon emissions in coastal ecosystems.

Acknowledgements
Jin-Jian Wang thanks the China Scholarship Council (project number CSC [2011]3010) for financial support. We appreciate the valuable comments from Dr Alexander Ruecker at Clemson University. We thank Dr Vijay Vulava at College of Charleston and Dr Wayne Chao at Clemson University for help on halide measurement. We thank R. Zha, S. Shen, J. Abad, P. Stow, A. Yu, Y. Zhou and S. Nagalingam for assistance with the GC-MS measurements and R. Weiss and B. Hall for gas calibration standards. This material is based on work supported by National Institute of Food and Agriculture–US Department of Agriculture (grant number SC-1700489), National Science Foundation (grant number 1529927 and grant number 1530375), and US Geological Survey Climate and Land-Use Change Research and Development Program. The work is presented in technical contribution number 6402 of the Clemson University Experimental Station.

References
Halomethane formation in coastal wetlands

